LCP 7:  A ROTATING SPACE STATION                  (
ILV 1
**** Google video search results page. See especially: “A NASA 40th Anniversary salute to 2001: A Space Odyssey", “2001 A Space Odyssey - Arrival (The Blue Danube)”, and “2001: A Space Odyssey tribute to Arthur C. Clark”
(http://video.google.ca/videosearch?hl=en&q=odyssey%202001%20space%20station&um=1&ie=UTF-8&sa=N&tab=wv#)
IL 1
**** This is a highly recommended excellent article. (Nick Fisher, “Space science 2001: Some problems with artificial gravity”, Physics Education, 2001). See Appendix
(http://www.google.ca/search?q=Rotating+space+stations+2001&hl=en&start=20&sa=N)
IL 2
**** A very comprehensive discussion of a rotating space station. See Appendix.

(http://www.go.ednet.ns.ca/~larry/physics/coriolis.html)
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Fig. 1: Newton’s Cannon
**** An excellent IA using Newton’s cannon   Where is the link for this?



Fig.2: The RSS of Space Odyssey 2001
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Fig. 3: The partially-built space station depicted in the film 2001: A Space Odyssey
IL 3
*** Source of figure 3.

(http://www.daviddarling.info/encyclopedia/S/Space_Station_V.html)
Early history:
IL 4
*** Source of the following discourse.

(http://www.daviddarling.info/encyclopedia/S/space_station.html)
A space station is a large orbiting structure in which humans can live and work for extended periods. The concept goes back at least as far as a tale called "The Brick Moon," written by Edward Everett Hale just after the American Civil War. The Russian physics teacher Konstantin Tsiolkovsky tackled the idea more technically in a 1895 science-fiction story, and in 1903 expanded his description to include rotation for artificial gravity, the use of solar energy, and even a space greenhouse with a closed ecosystem. In 1923, the German space pioneer Hermann Oberth coined the term "space station" to describe an orbiting outpost that would serve as the starting point for flights to the Moon and Mars. Five years later, the Austrian engineer Guido von Pirquet considered a system of three stations – one in a near orbit, one more distant, and a transit station in an intermediate elliptical orbit to link the other two – which he suggested might serve as refueling depots for deep space flights. The notion of a rotating wheel-shaped station was introduced in 1929 by Herman Noordung in his Das Problem der Befahrung des Weltraums (The Problem of Space Flight). He called his 30-meter-diameter station "Wohnrad" (Living Wheel) and suggested it be placed in geostationary orbit.

In figure 3 you see the partially-built space station depicted in the film 2001: A Space Odyssey, directed by Stanley Kubrick in 1968. The spinning, double-wheel structure is based on a space station concept developed by Wernher von Braun. Kubrick's station in the movie was 1,836 feet in diameter, revolving to produce one-sixth Earth surface gravity, orbited 200 miles above Earth, and was home to an international contingent of scientists, passengers, and bureaucrats. The centre of the station serves as a docking port for various space shuttles while the once completed outer ring houses living quarters, recreation and shopping areas, and meeting facilities.
THE MAIN IDEA:
In LCP 1 we discussed Newton’s ideas of placing a cannon ball in orbit. This exercise was placed in his Principia with a sketch that Newton himself provided (See figure 1). You should go back to LCP 1 and study this section again. The following contemporary introduction to satellite motion would be completely clear to Newton.
Astronauts in space stations feel "weightless", while orbiting the Earth just like the astronauts in the Shuttle do.  On earth you feel "weightless" when, for example, you jump off a diving board. There is gravity, of course, but the effect on your body is equivalent to being in zero-gravity. Similarly, for the person that is rotating or orbiting around the Earth in the space station the effect is the same as if there were no gravity, even though the gravity may be as high as .9g. That is so because the person is really falling freely toward the earth, i. e. vertical free fall due to gravity (h = 1/2at2) is just balanced by the horizontal motion due to inertia ( d = v t, according to Newton's first law of motion). See figure É
If you want to feel a force in your frame of reference (which is freely falling relative to the earth), you produce a motion that does not interfere with the rotation around the earth but can still bring about a fictitious force of the right magnitude and direction. Spinning your frame of reference would be such a motion. Now, if you spin your frame of reference just right you can bring about a centrally directed force (centripetal force) of the same magnitude as m g. Thus, using a = g = v2/r you can determine the rotation necessary to obtain an "artificial" gravity. You can review the discussion in more detail about centripetal motion in LCP1 and 2.
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Fig. 4: Centripetal acceleration and "artificial" gravity.
IL 5
**** Source of figure 4.

(http://www.go.ednet.ns.ca/~larry/physics/coriolis.html)
History of the physics and design of artificial satellites
IL 6
*** Comprehensive history of rocketry, space and satellites and source of the following          

                    discourse
(http://history.nasa.gov/SP-4225/documentation/early-station/early.htm)
Hermann Noordung (the pseudonym for Captain Potocnik of the Austrian Imperial Army) published Das Problem der Befahrung des Weltraums (The Problem of Space Flight), which included one of the first serious attempts to put on paper the design of a manned space station. Noordung's proposed design consisted of a doughnut-shaped structure for living quarters, a power generating station attached to one end of the central hub, and an astronomical observation station. He was among the first to suggest a wheel-shaped design for a space station to produce artificial gravity, and also argued the scientific value of such a station in a synchronous orbit above the Earth.

As early as 1929 Hermann Noordung (1892-1929) made a detailed sketch of a 100 foot diameter rotating wheel that produced an artificial gravity on the inside of the outer rim. In 1953 Hollywood made a movie called "Worlds in Collision" that featured a rotating space station. Unfortunately, the designers, instead of placing future astronauts erect on the inside of the rim toward the centre, had people walking perpendicular to the plane of the wheel! See figure 8.
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Fig. 5: Noordung’s design of a RSS.
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Fig. 6: Nordoong’s revolving space station  (RSS), See figure 5 for details
IL 7
*** History of early space station design
(http://www.hq.nasa.gov/office/pao/History/SP-4026/foreword.html)
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Fig. 7: Noordung’s three-unit space station in a geo-centric orbit
In figure 7 we see the 1929 Hermann Noordung image depicting a three-unit space station as seen from a space ship. The three units were the habitat, the machine room, and the observatory, each connected by an umbilical. The Earth is in the background, approximately 26,000 miles away. The station in this image is roughly above Cameroon's southern tip, in a geosynchronous orbit on the median of Berlin.
Noordung created the first detailed technical drawings of a space station. Power was generated by collecting sunlight through the concave mirror in the centre. This was one of three components of Noordung's space station. The other two were the observatory and the machine room, each connected to the habitat by an umbilical chord.

Later, in the 1950’s, the problems of weightlessness, space communications, maintaining a livable environment for the crew, and extravehicular activity were considered. Among the uses of such an observatory were chemical and physical experiments in a vacuum, telescopes of great size and efficiency, detailed mapping of the earth's surface, weather observation, surveillance of shipping routes, and military reconnaissance.


Space stations were “designed” in the 1950's and 1960s, long before there was any possibility of actually constructing them. The famous rocket and German-American space scientist Werner von Braun designed his much publicized “wheel” in the early 1950's, that was used as the prototype for the one we have all seen  in the 1967 movie 2001: A Space Odyssey. Spherical shapes were recommended because they had the greatest internal volume and were the best shape to contain the required air pressure of 15 pounds per square inch. In the late 1960's Gerard McNeill of Princeton University and his students proposed a 19 mile long and a four mile wide rotating cylinder as a space colony that would accommodate between 10,000 and 100,000 people.
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Fig. 8: A movie poster of a British Scie-Fi movie (1953).
(Space is a cold place to die! At a secret rocket base in England, Scientist Howard Duff is accused of committing the perfect crime--murdering his adulterous wife and her Russian spy lover and disposing of their bodies by firing them into space aboard a satellite. To prove his innocence, he must go into space and retrieve the orbiter with fellow scientist, lovely Eva Bartok, who insists on accompanying him, possibly never to return!)
Notice the position of the travelers in the RSS (enlarge the picture to see this).  The artist clearly did not understand the direction of the centripetal/centrifugal force acting on the persons standing on the rim!
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Fig. 9: Von Braun’s Space Station (1952)
(Artist Chesley Bonestell worked from rocket scientist Wernher von Braun's original designs to paint this view of a space station hovering above Central America, together with a reusable shuttle vehicle, space taxi, and telescope.)
IL 8
** Source of figure 9.

(http://www.pbs.org/wgbh/nova/station/inspired.html)
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Fig. 10: von Braun’s design of a RSS with a solar collector (1945).
IL 9
**  Source of figure 10.

(http://www.astronautix.com/craft/vonation.htm)

IL 10
** Description of O’Neill cylinder
(http://en.wikipedia.org/wiki/O'Neill_cylinder)



Fig. 11: O’Neill’s Space Colony. Artist's conception of the inside of a space colony,

which is essentially a giant rotating space station.
IL 11
** Source of figure 11

(http://www.harmonicresolution.com/Toroidal%20Space.htm)
IL 12
*** Discussion of O’Neill’s ideas and source of figure 12.
(http://www.belmont.k12.ca.us/ralston/programs/itech/SpaceSettlement/what/what.html)
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Fig. 12:  A rotating space colony
External view of a Stanford torus with some of the radiation-shielding "chevron" mirrors removed to show interior space.
2001: A Space Odyssey
Some space scientists favoured spinning discs. But most space experts, including Arthur C. Clark, the writer of 2001: A Space Odyssey, agreed that “space stations would grow by accretion” - that is, bits and modules would be tacked on until the vast structure became an “orbiting city”. We can see this taking place as the International Space Station (ISS) which was recently completed.
One might think that the idea of a rotating space station is dead. In the near future, however, after the ISS is completed, and when more room is necessary for preparing to go to the Moon and Mars landings toward eventual colonization in space, artificial gravity will have to be provided.

The movie 2001: Space Odyssey" (generally regarded as the finest science fiction movie of all time) featured a magnificent rotating space station. We will use that design as our model but add to it features that are new and necessary for an updated version of what originally was developed by Werner von Braun some fifty years ago.

We will assume that by the year 2020 a massive international effort will be made to begin colonizing the Moon and landing on Mars. A giant rotating space station (RSS) will be required to make preparations and provide acclimatization to the low gravity on the Moon and Mars. To meet those needs, a  RSS will be suggested that has essentially four levels of accommodation: Microgravity, Moon gravity, Mars gravity and Earth gravity. The specifications of the RSS are given below.
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Fig. 13: Bottom: The RSS of Werner von Brown. Top: the RSS of Space Odyssey 2001.
The design of the RSS
You are a space engineer and your team has been given the task of drawing up preliminary plans for the construction of a RSS and asked to consider some of the main problems to be encountered by those who will be living in the RSS. The RSS is to be in a near circular orbit between 400 and 500 km, accommodate about 50 people at one time, on essentially three levels of accommodation, as explained above.

You are also aware of the following: The US naval School of Aviation Medicine did a series of experiments where people lived in a rotating room for six weeks. They found that, to avoid motion sickness, 2.0 revs per minute was the maximum tolerable by most for a long period.. This constraint requires that the radius of the RSS be about 220m (see problem at the end).
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Fig. 14: A RSS showing the direction of the centripetal force.
Levels of accommodation (tears) on the RSS.
Your team decides that the radius of the space station should be about 220 m and that the space station should be placed in a circular orbit at an altitude of about 400 km, inclined 30 degrees to the equator. It is well known that to avoid motion sickness 2.0 revs per minute, or 1 revolution every 30 seconds, is the maximum tolerated by most people. You can easily show that this equal to 0.21 rad. per second for a radius of 220m. Clearly, a shorter radius would require too high an angular velocity to produce a centripetal acceleration of about 10 m/s2. A smaller radius would also mean smaller space and therefore less comfortable accommodation. On the other hand, a larger radius would require more material and therefore considerably more expense.


The angle was chosen in order that the RSS could cover most of the populated areas of the globe. The 400 -500 km altitude will ensure that the RSS will be above the already existing space stations and to lessen the effect of drag forces of the outer atmosphere.

Four small rockets will be attached to the rim, as shown. These rockets are capable of thrusts of up to 10000 N each.

The RSS will be then be a giant rotating wheel, 440 m in diameter with three rings, two trusses and a central cylindrical part that contains the module that will provide a  microgravity environment.

The RSS will have radii of 220m, 81m, and 38m, in order to match the centripetal acceleration values that correspond to the gravity on earth (1 g), on Mars (.37 g), and the Moon (.17 g). Each truss will be 220m long (See figure 15).

[image: image14]
Fig. 15: The RSS, with three levels of accommodation.
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Fig. 16:  The International Space Station (ISS)
IL 13
*** Source of figure 16

(http://bldgblog.blogspot.com/2007/10/deep-space-pharma.html)
Problems:

1.

You should now be able to show that the radii chosen for the three tears are 220m, 81m, 
and 38m in order to produce centripetal accelerations (simulate artificial gravity) of about 
10, 3.7, and 0.17 (m/ s2 ) for Earth, Mars and the Moon.
2.

The specs for the materials and modules are as follows:



i.
Each 1 m section for the three rims: 500 kg.



ii.
Each 5 m section for the four trusses: 1500 kg.



iii.
The central cylindrical module ( 5m by 10 m)) 20,000 kg.



iv.
All other supporting materials: 10,000 kg.


a.
Estimate the mass of the RSS. Compare this to the mass of the ISS which is 

about 281 tons and with that of the Space Shuttle (orbiter), about 100 tons.


b.
Compare the volumes and the masses of two identical RSS's, one with a 


radius of 100 m, and the other with a radius of 200 m. Assume that the cost is roughly proportional  to the mass and compare the cost of the two stations. Comment.
3.
In Figures 17 and 18 below we compare the effect of gravity on a person to the effect of the circular rotation while standing inside a RSS. How could a person differentiate between the two situations?
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Fig. 17: Simulating gravity.                            Fig. 18: Gravity and centrifugal force.
The physics of orbits:

In Newton’s thought experiment a cannon was placed at a height of about 40 km. He showed that only one specific speed (launched tangentially) would produce a circular orbit. Of course, we don’t launch satellite that close to the earth’s surface because the atmosphere, even though it has a very low density at this height, would soon slow down the satellite and the satellite then would spiral into the denser lower layers and burn up.
IL 14
*** History of artificial satellites

(http://en.wikipedia.org/wiki/Artificial_satellite)
The first artificial satellite, dubbed Sputnik, was launched by Russian engineers and scientists in 1957. The satellite was spherical, a 184-pound (83.6-kg) capsule. It achieved an Earth orbit with an apogee (farthest point from Earth) of 584 miles (940 km) and a perigee (nearest point) of 143 miles (230 km), circling the Earth every 96 minutes. See IL 15 below.
We will begin by verifying the above, using a guided problem solving approach, and then set a simpler problem where the orbit is circular. The problem of elliptical orbits will be discussed in detail in LCP 7, “Journey to Mars”.
IL 15
*** Sputnik satelites

http://www.britannica.com/eb/topic-561534/Sputnik

1.
Verifying the data above.


According to the data above, Sputnik 1 was in a highly eccentric orbit. To find the period of 
orbiting, we can use Kepler’s 3rd law, which states that

The ratio of the period squared and average radius cubed for a satellite is a constant.


This can be written as T2 / R3  = Constant (KE)
To calculate the period of Sputnik, we first determine the value of the constant for the Earth/satellite system. We already have a satellite in the sky, namely the moon. Newton used the moon and Kepler’s third law to confirm the inverse square law of gravity. We will use the moon’s period and the average distance from the centre of the earth to calculate the constant of the earth/satellite system. We should note, however, that the constant established this way will not be very accurate, because we will neglect the mass of the moon.

Use the following data to calculate this constant:


Period of the moon: 27.3 d.


The mean distance between the earth and the moon is: 3.84 x 108 m



a. Show that KE   =  9.84 x 10-14  (s2 / m3)



b. Now calculate the period of Sputnik 1 and show that it is about 96 minutes.

2.
Calculating the period of a satellite in circular orbit.


Imagine that Sputnik 1 was placed in a near- circular orbit at a height of about 250 km instead of 
an elliptical orbit. The speed of Sputnik is about 28,000 km/h or 7800 m/s. See IL 15 above.


        


Fig. 19: The first artificial satellite, the Russian  Sputnik, 1957.

a.

Calculate the gravity at a height of 250 km. Show that this value is about 9.1 m/s2, or 


about 0.93 g.


b.
Show that the speed of Sputnik (7800 m/s) at a height of 250 km, produced a centripetal 


acceleration of about .93 g.

c.

Calculate the period of the satellite. Show that it is about 88 minutes.
The launching of the first artificial satellite by Russia, caught most Americans by surprise.

See the newspaper article shown in IL 16.
IL 16
*** Contemporary report on the launching of Sputnik

(http://www.nytimes.com/partners/aol/special/sputnik/sput-01.html)
Movies and television programs in the fifties were full of the idea of going into space. What came as a surprise was that it was the Soviet Union that launched the first satellite. It is hard to recall the atmosphere of the time. John Logsdon. John Logsdon is chairman of the Space Policy Institute at The George Washington University.
The launching of a satellite
IL 17
*** History of satellite launching

(http://en.wikipedia.org/wiki/Satellite)

The following is taken from LCP1, and placed here as a review
LCP 1 IL 100
*** Complete description of orbits, including historical and mathematical background)


(http://en.wikipedia.org/wiki/Orbit#History



Fig. 20: A picture based on Newton’s sketch in the Principia
As an illustration of the orbit around a planet (ex. Earth), the much-used Newton’s cannon model may prove useful (see image below). Imagine a cannon sitting on top of a (very) tall mountain, about 40km, which fires a cannonball horizontally. The mountain needs to be very tall, so that the cannon will be above the Earth's atmosphere and we can ignore the effects of air friction on the cannon ball.
If the cannon fires its ball with a low initial velocity, the trajectory of the ball will curve downwards and hit the ground (A). As the firing velocity is increased, the cannonball will hit the ground further (B) and further (C) away from the cannon, because while the ball is still falling towards the ground, the ground is curving away from it (see first point, above). If the cannonball is fired with sufficient velocity, the ground will curve away from the ball at the same rate as the ball falls — it is now in orbit (D). The orbit may be circular like (D) or if the firing velocity is increased even more, the orbit may become more (E) and more elliptical. At a certain even faster velocity (called the escape velocity) the motion changes from an elliptical orbit to a parabola, and will go off indefinitely and never return. At faster velocities, the orbit shape will become a hyperbola.

IL 18
*** An interactive applet of Newton’s cannon thought experiment
(http://physics.uwstout.edu/physapplets/virginia/www.phys.virginia.edu/classes/109n/more_stuff/applets/newt/newtmtn.html)
Questions Newton could have answered about satellite motion.


Use IL 18 above for answering these.


(Note: You can obtain a qualitative and some quantitative understanding of satellite motion using 
this interactive program. Below we will discuss a quantitative approach, using Newton’s own 
calculations.).


1.
Find the velocity required to place a satellite into a circular orbit, not far above the surface of the 
earth.


2.
Notice that velocities lower and higher than this velocity describe a motion that looks like an 
ellipse.


3.
Find the escape velocity of an object from earth, the velocity necessary to escape the gravity of the 
earth.
In the next LCP, Physics on the Moon, we will go further and discuss the trajectory to the moon
Kinematic and dynamic properties of the RSS:
We begin by calculating the radial velocities necessary to produce a 1 g (~10 m/s2) earth-like artificial gravity on the rim, a Mars gravity simulation at a lower level and a Moon gravity simulation at the lowest. The module in the centre will not be rotating and therefore provide a microgravity environment.


1.
Show that the radial velocity to produce an acceleration of 1g (10 m/s2) is 0.21radians per 
second and that the period of rotation must be 30 seconds.


2.
Confirm that the other two radii, one to produce a centripetal acceleration equal to the 
gravity on Mars and on the Moon, are 82m and 38 m respectively.


3.
Estimate the drag force on the RSS at the height of 400 km. The density of the atmosphere 
at this height is 1.3x10-11 kg/m3. The speed of the RSS is about 8000 m/s, that you will be asked to 
calculate later.  (Hint: Refer back to LCP 3. Estimate the total surface area and re-read the section 
on the section discussing the drag forces in LCP 3).


4.
Now estimate the loss in height of the RSS for every orbit it makes, if countermeasures were not 
taken.

“Weightlessness” and gravity

1.
We have already discussed in detail in the last section, that most people seem to believe an 
orbiting satellite is considered "weightless", and that gravity thought to be zero at that altitude (400 
km). Do you agree? Comment.

2.
Although the RSS seems "weightless" while orbiting, the gravitational field strength at that 
altitude is actually quite high. Calculate the value of the strength of the gravitational field.
The period of rotation of the RSS around the Earth

1.
Calculate the period of rotation of the RSS around the Earth, that is, find the time it would take for 
a satellite to orbit the earth in a circular path at this altitude.

2.
Now consider the following: there is a small space station in a circular orbit at an altitude of 350 
km, just below the RSS. Their orbits are in the same plane and visual contact can be made. You 
would like to know how often the RSS be just 
above the space station in the time of 24 hours.

3.
How would you get from the RSS to the small space station?
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Fig. 21: Moving from the RSS to the space station.
“Artificial gravity” in the RSS

1.
Passage to the centre of the RSS will be possible through each of the four tubes that are inside the 
four trusses.


a.

How would the centripetal force (and thus the "artificial gravity") along the tunnel to the 


centre?

b.
As you climbed "up" from the outer rim what would your "weight" be at the middle of the 

tunnel?

c.

At the 40 m level, where you could stop for a visit with your friends who  are preparing to 

go to Mars?


d.
At the 20 m level,  where the astronauts are preparing to go to the Moon?

2.
Plot a graph of "weight" against distance from the rim to the centre of the RSS. Before plotting the 
graph guess the shape of the graph.
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Fig. 22:  The view from the RSS (Finding the distance from horizon to horizon)

1.
Viewing the earth from the rim of the RSS through windows would present a problem 
because 
the RSS would always point in the same direction (This is due to the gyroscopic action of the giant 
rotating wheel). What solution to this problem of viewing the earth would you recommend? See 
figure 23.

2.
It is important to know what your visibility is from the RSS. Looking down from the RSS how far 
could you see from horizon to horizon? Study the sketch below, before attempting a solution.
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Fig. 23: The view of the Florida coast from the ISST rotating at a height of about 300 km.
Cost and Energy required to transport the material to build the RSS

1.
NASA estimates that it will cost about $60, 000 to place one kg into orbit. The estimated cost for 
the ISS for “design, development, test and evaluation only is about $17 billion (American). 
Approximately how much would it cost to place the parts of the RSS into orbit?


2.
One of the important tasks is to calculate the energy required to transport all sections of the RSS 
into orbit. (You cannot account for such factors as the energy required to overcome friction and the 
efficiency of combustion for the Shuttle).


3.
To get some idea of how much energy is involved, calculate the fuel-equivalent in gasoline if one 
kg of gasoline contains --- J of potential chemical energy.

The work required to transport material inside the RSS
Transporting material from the rim to the centre section and back would be routine. Consider the following situations:


1.
How much work is required to transport a 100 kg optical telescope from the rim  to the centre?


2.
An 80 kg astronaut carries a 50 kg toolkit from the rim to the midway of one of the tubes. How 
much total work does he do to accomplish that?


3.
If on one such trip an astronaut lost his grip and slid "down" the tube with what speed would 
he/she hit the rim?
The "binding energy" of the RSS
Binding energy can be thought of as the measure of the "gravitational bonding" an object has in a given gravitational field. In other words, you want to know how much energy it would require to move the RSS away from its orbit around Earth to infinity. For example, your binding energy on earth is equal to 1/2 m ve2 (joules), where m is your mass, and ve is the escape velocity on earth. This is the same as using the E = GmM/ Re, where G is the universal gravitational constant, m is the mass considered, M the mass of the earth, and Re the radius of the earth.


a.

Calculate the binding energy of a 1 kg mass to the surface of the earth. You can ignore the 

effect of the rotation of the earth? Why?


b.
It is interesting (and more valuable), however, to compare the binding energy of a one 


kilogram object on Earth with the binding energy of a one kilogram object on the 


RSS. How do these compare?


c.

Calculate the binding energy of the RSS.
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Fig. 24: Motion in the RSS                                       Fig. 25: Motion in the RSS
[image: image25.png]//}

Ball tossed at
this point

path of hand

View of movement of ball and hand
from outside the rotating station

Center of
Rotation of
the Station

15.7 mis path of ball 16.7 mis




Fig. 26: Motion in the RSS: as seen from outside  in an IFR.
Motion inside the RSS

How similar to earth will it be to live inside the RSS? For example, it is clear that on the outside rim, the “artificial gravity” effect of a rotating 100 m wheel will be a “truer” effect than on the inside rings.


1.
Describe the path of an object that is dropped from a height of 1 m above the "floor", as seen by an 
observer in the RSS on the rim (earth-like section).


2.
How would this path look as seen by an observer that is travelling with the RSS?


3.
Now try to describe the path of an object thrown




a.
horizontally,




b.
at an angle,




c.
as seen by an observer in the RSS.




d.
as seen by an observer travelling with the RSS.

4.
What would a game of table-tennis look like in the RSS? In what ways, if at all, would you have to 
adjust your game? Explain.


5.
Compare the rate of change of the centripetal accelerations (and thus the rate of change of the 
“gravity” perceived by the astronauts) for the three levels. You could call this your “gravity 
gradient” g and expressed in terms of m/s2 / m.


Remember that the centripetal acceleration is proportional to the distance from the centre. For example, at 100 m from the centre of the RSS,  g would be 1/ 100 x 10 = .1 m/s2 / m. So, if a 2 m tall astronaut were standing inside the outer ring, the “gravity” on his head would be .02, or 2% lower than the gravity on the floor.


This may not be much but in the Mars section,  g would be correspondingly higher and in the Moon section even higher. Discuss the kinematic and dynamic effects of g for the three levels.


6.
There are other interesting motions you might want to investigate. For example: The motion of a 
pendulum, the motion of a mass attached to a string, etc.

7.
Try this "thought experiment": Describe the path of a ball thrown at an angle, as seen by an 
observer inside the RSS. Imagine, for the purpose of this problem that the wheel is completely 
covered, that is, it is cylindrical.
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Fig. 27: Motion in the RSS as seen from outside in an IFR.
IL 19
*** Source of problem 8


(http://www.go.ednet.ns.ca/~larry/physics/coriolis.html)


8.
Special problem (taken from IL 19):

For a detailed discussion of the kinematics and dynamics of motion in a RSS, see Appendix Part 
A, which is based on the IL above.


Answer the questions below by referring to Appendix Part A, or IL 19 itself.

Lary Bogan writes in IL 19:


a.
 
I have calculated the path of a ball tossed upward in a rotating station.

The conditions are: 
· 
A Distance from centre at the start: 25 m
· 
Centrifugal Acceleration at 25 m: 9.8 m/s2
· 
Height of the toss: 1.5 m
The result is shown in the diagram to the right. The yellow ball shows the path of a 'normal' toss on the Earth. The white ball is shows the path of the ball on the space station. The ball positions are shown every 1/10th of a second.
Some of the calculated values are:
· 
Angular velocity of the space station: 0.626 radians/s
· 
Linear velocity of the station at 25 m: 15.65 m/s
· 
Velocity of the ball at release: 5.68 m/s
· 
Time of flight to maximum height: 0.512 seconds. Real time of flight is shown in the 
animation below. (See animation in IL ÉÉ)
Your task is to check Lary Bogan’s calculations and comment.

b.
Discuss the following statement made by Lary Bogan:


As we saw with the ball toss, at the top of the path, when the velocity of the ball was horizontal, the coriolis acceleration was downward (or outward relative to the rotating space station). If an astronaut runs in the direction of rotation of the space station, he will feel this acceleration as an added force on the floor, ie, his/her weight will effectively increase. If the astronaut runs in the opposite direction of the rotation, their weight will decrease!


c. 
Check the calculation below and comment:


Some numbers will make this more real. In the same space station as described above, if you were to run at 1 m/s you would change your weight by 13%. 
Coriolis Acceleration = 2(0.626 rad/s)(1 m/s) = 1.26 m/s2 Relative to the centifugal force = 1.26 m/s2/9.8 m/s2 = 0.127


d. 
Lary Bogan continues:


Of course what is happening as seen from outside the space station is that as the astronaut runs in the same direction as the space station, their speed in a circle increases and the force needed to move them in that circle must increase - hence the increase in 'weight'. When the astronaut runs opposite to the rotation of the station, their circular speed decreases and less radial acceleration is needed to move them in the circle, hence a lower for on their feet and less 'weight'.

Discuss this statement.
Using solar energy to power the RSS.
IL 20
**** An excellent website for problem solving
(http://people.uncw.edu/hermanr/GR/SpaceStation.doc)
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Fig. 28: Solar collectors on space stations: First design by von Braun, in 1945.
Modern design, 2000.
We will look at the electric power supply of the ISST first. The power supply comes from two  sources:


1.
Using photovoltaic cells



2.
Using the heat of fusion of certain salts.

In the first, sunlight (energy) is converted to electric energy by photovoltaic cells and the electricity is stored in batteries. In the second the sun’s energy (heat) melts the salts and when the salts “freeze” they give off this energy. We will discuss only the first.

The ISS has six arrays of photovoltaic cells, each 34 m long and 12 m wide. The system is expected to generate at least 56,000 watts of electric power.


1.
We saw in LCP 6 that the solar constant, or the radiation energy received from the sun at the 
surface, outside the atmosphere, is about 1400 Watts/ m2. On the surface of the earth we typically 
receive only about 400 Watts/ m2, because of the absorption of the radiation through the 
atmosphere. Unfortunately, the efficiency of photovoltaic cells is only about 10%.


a.
Calculate the total radiation energy intercepted by the solar collectors if they are 



perpendicular to the sun.

b.
The total energy absorbed if they are 60 degrees to the sun.

c.
If the photovoltaic cells are 10% efficient what maximum power output would you expect? Compare that with the NASA estimate and comment.


2.
A typical house is supplied with 110 V (AC) and 120 ampere capacity. Compare the electric 
power availability of a single house to that of the ISS and comment.


3.
The ISS as well as the RSS will be in darkness about half the time. Discuss the storage capabilities 
you would like to have to insure a continuous power supply.


4.
The power supply of the IRS must be considerably larger than that for the ISS. How would you 
arrange the arrays of solar cells on the RSS? To answer that question, first calculate the area of 
solar cells you will need, assuming that the RSS will require about three times as much power  as 
the SST. Then show that if the 12 m wide arrays are so placed as to cover the four 100 m trusses 
we well get about twice the power of the ISST.
Escape velocity from the RSS
An undesirable object is to be sent into an escape (open) orbit, never to return. With what velocity (speed and direction) should this object be ejected from the RSS?Remember, the escape velocity from the Earth is about 11 km/s but if the object is to be ejected from the solar system then a much larger escape velocity is required.
Rotational energy and gyroscopic action of the RSS
There are jets placed at four points (see diagram of RSS) to make the giant wheel rotate initially and then to control the rotation whenever necessary. Look up how one finds the energy required to make a wheel rotate and calculate the energy required to rotate the station at the angular speed necessary to produce a centripetal acceleration of 1 g. It is interesting and instructive to compare this to the energy required to place the RSS into orbit. Before calculating these values, however, you should attempt to make a guess as to their ratio. Comment.

(Note: Consider the wheel as a giant wheel with all its mass concentrated at the rim). This assumption will simplify your calculations).

1.
It is important to know the time it takes to reach the desired spin rate. Assuming that 10000N of 
thrust is used, how long would it take to reach the spin rate you calculated earlier?


2.
How many revolutions will the station have to make in this time?


3.
How much work was required to accomplish this?


4.
The RSS is, of course, a giant gyroscope. Calculate the torque that would be required to change the direction of the rotating RSS.
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Fig. 29: The Orbiter changing orbits.
Taken from:  IL https://aerospacescholars.jsc.nasa.gov/HAS/cirr/Images/onorbitl.gif NOT FOUND
An orbital thrust maneuver or burn is used to change a spacecraft's velocity.

To change your orbit, you must burn your rocket engine a certain amount of time to produce the necessary change in velocity.
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Fig. 30: Posigrade Burns
A posigrade horizontal burn on a circular orbit will increase the eccentricity of the orbit (A to B).  The new orbit will intersect the old orbit at the burn point, which is now the perigee of the ellipse. The orbit also becomes larger.  The change of shape of the orbit will depend on where the burn occurs.  A posigrade horizontal burn, done at the apogee of the new orbit will cause it to become less eccentric and more circular in shape (B to C) as noted in the diagram below.
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Fig. 31: Retrograde burns
A retrograde horizontal burn will lower the altitude of your orbit on every point except for the burn point.  Therefore, the orbit becomes smaller.  If a retrograde burn is done at the apogee of an ellipse or on a circular orbit, the orbit becomes more eccentric.  If a retrograde burn is done at the perigee of an ellipse, the burn will become more circularized.  This would be used to change your orbit from C to B to A in the diagram above, or to lower your orbit. The new orbit that results from an orbital change maneuver must intersect or touch the old orbit at the location in which the maneuver occurred.

Taken from IL : https://aerospacescholars.jsc.nasa.gov/HAS/cirr/ss/3/2.cfm NOT FOUND
· If a satellite has a true anomaly value of between 0° and 180°, where is it in it's orbit?

· Does a satellite travel faster at the perigee or at the apogee?

· Would a comet have a low or high eccentricity to its orbit?

· Think of some uses for a spacecraft in polar orbit.

· When you are getting ready to return to Earth and want to slow down, in which direction do you fire your thrusters?

· To lower your orbit from a high circular orbit to a lower one, what type of horizontal burn would you use?
In the next chapter you will learn about the many facets of astronaut training.
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Fig. 32: The satellite's distance from the Earth varies along its orbital path,

with the closest point to the Earth being the perigee and the farthest

point being the apogee. These two points lie on the major axis.
The distance between the apogee (or perigee) and the centre of the major axis is called the semi-major axis.  If the eccentricity is high enough, a satellite's orbital path can cross the surface of the Earth. The satellite would then crash into the surface of the Earth.

a.
You may have noticed an apparent paradox by now: In going from low orbit and high orbital 
velocity, to a high orbit and low orbital velocity you have to increase your speed along the orbit, 
and in going from high orbit and low orbital velocity to low orbit and high orbital velocity you 
have to decrease your orbital velocity. How can that be?

One website puts it this way:


When you fire your thrusters in a reverse direction you will increase your forward velocity. When 
you fire your engines in the forward direction, you will slow down. This is what the Shuttle does 
when it makes its de-orbit burn to come home. On a posigrade orbit, these maneuvers are called 
posigrade and retrograde burns.

b.
The energy needed to “lift” our 1 kg test mass from LEO to GESO is 4.87x107 J. If this 
manoeuvre had been performed in deep space, what velocity would the object have reached?

Future RSSs?
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Fig. 33: ???
For details of this design see IL 21.
IL 21
*** Details of RSS designs
(http://www.spacefuture.com/archive/feasibility_of_space_tourism_cost_study_for_space_tour.shtml)
Questions and problems
(Partially based on the article “Space science 2001: some problems with artificial gravity” by
Nick Fischer. See Appendix for text and diagrams)).
The following questions and problems are based on sections taken from the article by Fisher.


1.
Read section (d) “Free fall is different” on page 196 carefully and then answer the questions.




a.When an astronaut drops an apple, describe is the trajectory as seen in the frame of  


reference (FR) of the astronaut?



b.
From the FR of an observer that travels with the centre of the RSS?



c.
Fisher claims that “to reduce this effect the angular velocity has no effect”. 



Discuss.



d.
An astronaut throws the apple in (to him) a horizontal direction with the same 



velocity as the velocity of the tangential velocity of the RSS. Describe the 



trajectory as seen by him?


2.
Read the section (c) on page 197 carefully and then answer the questions.



a.
Show that  2.0 rev. per minute is equivalent to an angular velocity of 0.21 radians 


per second. (There are 2 π radians in one complete revolution, by definition).




b.
Show that for the RSS to produce a centripetal acceleration of 1 g, at an angular 



velocity of  0.21 radians per second (2.0 rev. per minute) the radius must be about 


220 m.



c.
The head of an astronaut is closer to the centre of rotation; therefore the head 



would experience a smaller “gravitational” force. Show that this force in the large RSS would be only be about 1% of that the astronaut experiences in his/her feet.


3.
Read the section The effect of moving in the spacecraft on page 198 carefully and then 


answer the questions:




a.
Show that the speed of the rime of the RSS is 46 m/s.



b.
Imagine that an astronaut runs at 3m/s in the direction of rotation. What would be 


the “gravity” acting on his body?




c.
What would be “gravity” on his body if he ran 3m/s in the opposite direction?



d.
If an object were thrown at 46 m/s in the opposite direction to the motion of the 



RSS, what would be its trajectory? Discuss.


4.
Read the section Free-fall behaviour of an apple on page 198/99 carefully and 



then answer the questions.




a.
Show that for a radius 200m the apple would seem fall as if the astronaut were on 


the earth.



b.
Now show that for a radius of 22 m the apple would seem to fall behind the 



astronaut. Discuss the limitations imposed by the radius of the RSS.
Conclusion
There are, of course, many problems that you would face as a designer (or space architect) that we did not touch on. For example, you might wish to investigate the placing of an astronomical observatory in the RSS, or consider the question of the best (optimum) size of the RSS for the activities you wish to do. You could generate these questions, and frame them appropriately by discussing them with your fellow students and your instructor.


NASA does not seem to have plans at the moment for producing an RSS on the scale we have discussed. It is clear, however, that for extended periods of stay astronauts will have to live in an environment that produces an artificial gravity similar to the one our physiology is accustomed to. We are therefore probably looking forward to space stations of the type NASA proposes (see NASA publication) with an occasional RSS in their midst.

In the next LCP  we will discuss getting to and living on the Moon, namely investigate the physics of motion and static forces in a low-gravity environment. In order to get to the Moon a Hohmann orbit transfer HOT will be used, both for the main supplies of the Moon colony construction and for transporting astronauts from the RSS to the Moon. Again in LCP7, we will use a HOT orbit to travel to Mars.
Appendix:.
Despite technical problems associated with designing a rotating space station it is still thought that such a device may provide a more tolerable work environment and prevent some of the physiological changes that currently pose a threat to long-duration space missions. In the present analysis four case studies are presented and the results show that centrifugal and Coriolis effects could hinder one's ability to walk or run in a natural way in such an environment. In a rotating station that has a nominal 'G-level' equal to that on earth it can be shown that a person running at 3.8 m s -1 could experience foot 'heaviness' effects that range from 1 to 3 g and fore-aft foot 'forces' that range from -0.5 to +0.5 g. In contrast the hip region could sense a relatively constant 'force' equal to 2 g.

With regard to the body as a whole there would be 'weight changes' that depended on the direction of gait. While these conditions imply that locomotion in a rotating space station would be different from normal gait, it is likely that given sufficient training, astronauts could learn optimal strategies to account for centrifugal and Coriolis effects on individual body segments. The learning process would also entail developing strategies on which route to take when moving from one location to another, since in many cases the shortest route would not be the least energy consuming. Such training would be justified if it were shown that artificial gravity was an effective countermeasure to the problems of muscle atrophy and bone loss.
PMID: 11539277 [PubMed - indexed for MEDLINE]
More about living in a RSS
Artificial Gravity: Which way is Up?



by John G. Cramer from IL 22
IL 22
**** Artificial gravity

(http://www.npl.washington.edu/AV/altvw18.html)
The space station doughnut of 2001 and the O'Neill space-habitat cylinder have become part of the furniture of science fiction, so much so that we take spin-generated artificial gravity to be interchangeable with the Earth-normal variety in which we live. But there are differences that would be quite apparent to anyone living in the spin-generated variety. The subject of this AV column is an exploration of the differences between the "natural" gravity of Earth and the "artificial" gravity of a rotating space station.

My interest in the physics of space station gravity developed because last year Vonda McIntyre was writing a book with a space station setting, and she asked my advice. The book, Barbary, is about a teenager who leaves Earth to live in a space station with spin-generated gravity. I helped Vonda in a very minor way by identifying the physical effects that the heroine would experience in that environment. What's it like to ride an elevator in a space station? How would a ball game look if it were played there? If you woke up in a strange location, what simple tests would tell if you were in a rotating space station rather than at rest on the ground? And so on ... I found that there are some interesting side-effects of artificial gravity, perhaps well known to NASA experts but obscure to the rest of us. And I was surprised to find that some recent SF hasn't been too accurate in describing the space habitat environment.


Looking at the world from a rotating vantage point (be it a merry-go-round or a space station) is odd and confusing. So let's start with a simple concrete example. Suppose that we are on a doughnut space station, about half the size of the big one in 2001, providing living and working space at earth-normal gravity (1 g) for about 150 people. Such a station might take the form of a "wheel" 15 m wide and 160 m in diameter, rotating on its axis so that it makes a full rotation every 18 seconds. Because the floor of the space station rotates through it's full circumference in this time, it has a speed (called the tangential velocity because the velocity lies along the tangent of the circle of travel) of 27.9 m/s. A note here on scaling to other sizes: If the station had 4 times this diameter, the rotation period to give 1 g of artificial gravity would be twice as long and the speed of the floor would be twice as large.


Let's do a simple "Mr. Science" experiment in this space station. Place a phonograph turntable on floor and use it to spin a cake pan filled with water. Let's use a cake pan 40 cm in diameter and spin it at the 78 RPM setting of the turntable. The outer edges of the spinning cake pan will be moving at a speed of 1.6 m/s with respect to the floor. Therefore, the edge of the cake pan towards one outside wall of the station is traveling at an absolute speed of (27.9+1.6) = 29.5 m/s, while the opposite edge of the pan has a speed of (27.9-1.6)=26.3 m/s. The pull of artificial gravity depends on the square of this tangential speed, so the "fast" edge experiences an increased pull of 1.12 g, while the pull on the "slow" edge decreases to 0.89 g. The water in the pan will tend to tilt, climbing higher on the slow edge and dropping lower on the fast edge. A spinning gyroscope would tumble in the same way, making the toy top a poor gift for a space child. And so we see different physical effects in the artificial gravity of a space station than would be found if the same experiments were performed in the "natural" gravity of Earth.


This simple experiment has an interesting implication for the psycho-physiology of human balance. Our equilibrium and our perception of vertical orientation come from the interaction of the fluid in the semicircular canals of our inner ears with the nerve fibers there. The vertigo experienced during and after spinning in an amusement park ride demonstrates what happens when this mechanism is disturbed. Seasickness is another example. Now suppose that you stand looking spinward down the long upward-curving hall along the rim of the space station, and then rapidly turn your head clockwise so that you are looking at the side wall to your right. Your head has made a rotation similar to that of the pan on the turntable. The fluid in your semicircular canals will therefore rise on one side and drop on the other as the water did.

The subjective consequence is that you will "see" the floor tilt to the left, with the right side wall "rising" and the left side wall "dropping" momentarily. The amount of perceived floor tilt depends on the ratio of ear-velocity to floor velocity, but for any but the very largest of space stations the tilt sensation will be a quite unmistakable. This effect is likely to be fairly disorienting and may be a source of nausea and vertigo for the "greenhorn" who has just arrived from "natural" gravity. For the experienced space station inhabitant, however, the "floor-tilt effect" will become a useful aid to orientation because it will allows the user to tell whether he is looking "spinward" (in the direction that the floor is moving due to the spin) or "anti-spinward" (against the floor velocity) down the hall.


Head twisting and nodding will also produce other subjective effects. Facing a wall at right angles to the spin direction and doing a similar head twist will make the floor seem to tilt up or down. Nodding or wobbling your head will produce similar effects. Placed in a small closed room, the experienced space station dweller can establish his orientation with respect to the spin of the station with a few twists of his head.

The memorable jogging scene of 2001 when astronaut Frank Poole runs in what we see as a vertical circle brings to mind another effect. The jogger running spinward down a hall along the rim of the station increases his tangential velocity, thereby creating a slight increase in the centrifugal pull he experiences and giving the impression of running uphill. Running anti-spinward will decrease the pull slightly and create the impression of running downhill. The change in pull will depend on the ratio of running speed to floor speed, and the effect would be less in a big station than a small one.

The mysterious "force" that makes the water tilt in the pan, moves the fluid in the semicircular canals, and changes the pull on the runner is called the Coriolis force. Like the "centrifugal force" which makes spin-generated artificial gravity, the Coriolis force is not a real force of nature, but rather a sort of illusion or pseudo-force which appears to observers in rotating systems. But if the Coriolis force is an illusion, its effects are nevertheless quite real. Its actions on air flow on the Earth's surface are responsible for the circular weather patterns visible in satellite weather pictures: the ragged spiral of the hurricane and the gentle swirl and counter-swirl of high and low pressure areas.

Another Coriolis effect appears when we ride the space station's elevator. There are good astronautical engineering reasons for arranging the station so that arriving shuttles dock at the station hub, matching velocity and spin with the station before establishing tight mechanical contact. Arriving passengers exit the shuttle in the zero-gravity zone of the hub and then ride an elevator to the 1 g zone at the rim where the living and working areas are located. But what is the elevator ride like? The elevator must travel 80 m from hub to rim, the rough equivalent of the elevator in a 25 story building. Let's assume that the elevator is set to accelerate to a speed of 5 m/s in a period of 2 seconds, then travel toward the rim at that speed for 14 seconds, and finally decelerate to zero velocity in the final 2 seconds of the trip.


With this arrangement, the elevator riders will be pushed against the ceiling of the car for two second with a force of 0.25 g. During that 2 second period a pull toward the anti-spinward wall of the car will build up to a force of 0.22 g. During the 14 second ride this sideways force will remain constant, but added to it will be a downward force which builds up to 1 g as the centrifugal force of the station's spin builds. Finally in the last 2 seconds of the ride the downward force will rise to 1.25 g and the pull toward the anti-spinward wall will diminish to zero. As the car stops and the passengers step out the constant 1 g downward pull of the station is all that remains. And so the passengers have had a very peculiar ride. Their perception of "down-ness" has migrated from the ceiling to the anti-spinward wall and finally to the floor, as if the car had rotated 180o during the trip.


The source of the sideways pull in the elevator is the Coriolis force. An equivalent view is that the riders in the elevator must travel from the hub, where they have zero tangential velocity, to the rim, where they must match the 27.9 m/s tangential velocity of the floor. Clearly during the elevator ride they must not only be taken "down" along a radius from the hub to the rim, but they must also be accelerated up to the speed of their new environment. The sideways push of the elevator wall accomplishes this. A similar ride in the upward direction from rim to hub would reverse these forces, and now the sideways pull toward the spinward wall removes the rim's tangential speed to match the hub environment.


Finally, let's consider space station sports. How would a baseball pitch or a basketball pass be changed in the environment of the space station? The answer depends on the direction of travel of the ball. Movement parallel to the station's axis of rotation, across the long hallway for example, shows no Coriolis effects. But a ball thrown spinward will seem to drop, and an anti-spinward pitch will rise due to Coriolis effects. Similarly a falling object will curve antispinward, a rising object will curve spinward due to the Coriolis effects, as we saw in the case of the descending elevator. Athletes after sufficient practice will begin to view these distortions of trajectory as natural and will automatically include compensations for them as a part of optimum performance. However, the size of the compensations needed depends on the tangential velocity of the space station floor, with higher velocities leading to smaller Coriolis effects. In an Inter-Orbital Olympics where participants from a variety of stations of different sizes are assembled for athletic competition there will be a definite "home-court" advantage. Participants from smaller-diameter space stations will tend to overcorrect for the Coriolis effects and participants from larger diameter stations will undercorrect. I wonder how the Inter-Orbital Olympic Committee will handle that one?
http://people.uncw.edu/hermanr/GR/SpaceStation.doc
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